Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging.

نویسندگان

  • C L Cheung
  • J H Hafner
  • C M Lieber
چکیده

Carbon nanotubes are potentially ideal atomic force microscopy probes because they can have diameters as small as one nanometer, have robust mechanical properties, and can be specifically functionalized with chemical and biological probes at the tip ends. This communication describes methods for the direct growth of carbon nanotube tips by chemical vapor deposition (CVD) using ethylene and iron catalysts deposited on commercial silicon-cantilever-tip assemblies. Scanning electron microscopy and transmission electron microscopy measurements demonstrate that multiwalled nanotube and single-walled nanotube tips can be grown by predictable variations in the CVD growth conditions. Force-displacement measurements made on the tips show that they buckle elastically and have very small (</= 100 pN) nonspecific adhesion on mica surfaces in air. Analysis of images recorded on gold nanoparticle standards shows that these multi- and single-walled carbon nanotube tips have radii of curvature of 3-6 and 2-4 nm, respectively. Moreover, the nanotube tip radii determined from the nanoparticle images are consistent with those determined directly by transmission electron microscopy imaging of the nanotube ends. These molecular-scale CVD nanotube probes have been used to image isolated IgG and GroES proteins at high-resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies

The structural and mechanical properties of single-walled carbon nanotubes (SWNTs) make them ideal tips for scanning probe microscopies such as atomic force microscopy (AFM). However, the ideal nanotube probe, which corresponds to an individual SWNT, has been difficult to produce in high yield. To overcome this difficulty, a straightforward and easily implemented method that enables very high-y...

متن کامل

Growth and fabrication with single-walled carbon nanotube probe microscopy tips

Single-walled carbon nanotube ~SWNT! probe microscopy tips were grown by a surface growth chemical vapor deposition method. Tips consisting of individual SWNTs ~1.5–4 nm in diameter! and SWNT bundles ~4–12 nm in diameter! have been prepared by design through variations in the catalyst and growth conditions. In addition to high-resolution imaging, these tips have been used to fabricate SWNT nano...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Structural and functional imaging with carbon nanotube AFM probes.

Atomic force microscopy (AFM) has great potential as a tool for structural biology, a field in which there is increasing demand to characterize larger and more complex biomolecular systems. However, the poorly characterized silicon and silicon nitride probe tips currently employed in AFM limit its biological applications. Carbon nanotubes represent ideal AFM tip materials due to their small dia...

متن کامل

Magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes

Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 8  شماره 

صفحات  -

تاریخ انتشار 2000